An $L_{2}$-Boosting Algorithm for Estimation of a Regression Function

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An L2-boosting algorithm for estimation of a regression function

An L2-boosting algorithm for estimation of a regression function from random design is presented, which consists of fitting repeatedly a function from a fixed nonlinear function space to the residuals of the data by least squares and by defining the estimate as a linear combination of the resulting least squares estimates. Splitting of the sample is used to decide after how many iterations of s...

متن کامل

High-Dimensional $L_2$Boosting: Rate of Convergence

Boosting is one of the most significant developments in machine learning. This paper studies the rate of convergence of L2Boosting, which is tailored for regression, in a high-dimensional setting. Moreover, we introduce so-called “post-Boosting”. This is a post-selection estimator which applies ordinary least squares to the variables selected in the first stage by L2Boosting. Another variant is...

متن کامل

An algorithm for the estimation of a regression function by continuous piecewise linear functions

The problem of the estimation of a regression function by continuous piecewise linear functions is formulated as a nonconvex, nonsmooth optimization problem. Estimates are defined by minimization of the empirical L2 risk over a class of functions, which are defined as maxima of minima of linear functions. An algorithm for finding continuous piecewise linear functions is presented. We observe th...

متن کامل

A Gradient-Based Boosting Algorithm for Regression Problems

In adaptive boosting, several weak learners trained sequentially are combined to boost the overall algorithm performance. Recently adaptive boostingmethods for classification problems have been derived asgradient descent algorithms. This formulation justifies key elements and parameters in the methods, all chosen to optimize a single common objective function. Wepropose an analogous formulation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2010

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2009.2039161